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Abstract. The lognormal distribution describing, e.g., exponentials of Gaussian random variables is one
of the most common statistical distributions in physics. It can exhibit features of broad distributions
that imply qualitative departure from the usual statistical scaling associated to narrow distributions.
Approximate formulae are derived for the typical sums of lognormal random variables. The validity of
these formulae is numerically checked and the physical consequences, e.g., for the current flowing through
small tunnel junctions, are pointed out.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
05.40.Fb Random walks and Levy flights – 73.40.Gk Tunneling

1 Introduction: physics motivation

Most usual phenomena present a well defined average be-
haviour with fluctuations around the average values. Such
fluctuations are described by narrow (or “light-tailed”)
distributions like, e.g., Gaussian or exponential distribu-
tions. Conversely, for other phenomena, fluctuations them-
selves dictate the main features, while the average values
become either irrelevant or even non existent. Such fluctu-
ations are described by broad (or “heavy-tailed”) distribu-
tions like, e.g., distributions with power law tails generat-
ing ‘Lévy flights’. After a long period in which the narrow
distributions have had the quasi-monopoly of probability
applications, it has been realized in the last fifteen years
that broad distributions arise in a number of physical sys-
tems [1–3].

Macroscopic physical quantities often appear as the
sums Sn of microscopic quantities xi:

Sn =
n∑

i=1

xi, (1)

where x1, x2, . . . , xn are independent and identically dis-
tributed random variables. The dependence of such sums
Sn with the number n of terms epitomizes the role of the
broadness of probability distributions of xi’s. One intu-
itively expects the typical sum St

n to be given by:

St
n � n〈x〉, (2)

where 〈x〉 is the average value of x. The validity of equa-
tion (2) is guaranteed at large n by the law of large num-
bers. However, the law of large numbers is only valid for
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sufficiently narrow distributions. Indeed, for broad dis-
tributions, the sums Sn can strongly deviate from equa-
tion (2). For instance, if the distribution of the xi’s has
a power law tail (cf. Lévy flights, [1]), ∝ 1/x1+α with
0 < α < 1 (〈x〉 = ∞), then the typical sum of n terms is
not proportional to the number of terms but is given by:

St
n ∝ n1/α. (3)

Physically, equation (2) (narrow distributions) and equa-
tion (3) (Lévy flights) correspond to different scaling be-
haviours. For the Lévy flight case, the violation of the law
of large numbers occurs for any n. On the other hand, for
other broad distributions like the lognormal treated here-
after, there is a violation of the law of large numbers only
for finite, yet surprisingly large, n’s.

These violations of the law of large numbers, what-
ever their extent, correspond physically to anomalous
scaling behaviours as compared to those generated by
narrow distributions. This applies in particular to small
tunnel junctions, such as the metal-insulator-metal junc-
tions currently studied for spin electronics [4,5]. It has
indeed been shown, theoretically [6] and experimentally
[7,8], that these junctions tend to exhibit a broad dis-
tribution of tunnel currents that generates an anomalous
scaling law: the typical integrated current flowing through
a junction is not proportional to the area of the junction.
This is more than just a theoretical issue since this devi-
ation from the law of large numbers is most pronounced
[7,9] for submicronic junction sizes relevant for spin elec-
tronics applications.

A similar issue is topical for the future development of
metal oxide semiconductor field effect transistors (MOS-
FETs). Indeed, the downsizing of MOSFETs requires a
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reduction of the thickness of the gate oxide layer. This im-
plies that tunnelling through the gate becomes non neg-
ligible [10,11], generating an unwanted current leakage.
Moreover, as in metal-insulator-metal junctions, the large
fluctuations of tunnel currents may give rise to serious
irreproducibility issues. Our model permits a statistical
description of tunnelling through non ideal barriers ap-
plying equally to metal-insulator-metal junctions and to
MOSFET current leakages. Thus, anomalous scaling ef-
fects are expected to arise also in MOSFETs.

The current fluctuations in tunnel junctions are well
described by a lognormal probability density [7,12]

f(x) = LN(µ, σ2)(x)

=
1√

2πσ2x
exp

[
− (ln x − µ)2

2σ2

]
, x > 0 (4)

depending on two parameters, µ and σ2. The lognor-
mal distribution presents at the same time features of
a narrow distribution, like the finiteness of all moments,
and features of a broad distribution, like a tail that can
extend over several decades. It is actually one of the
most common statistical distributions and appears fre-
quently, for instance, in biology [13] and finance [14]
(for review see [15,16]). In physics, it is often found
in transport through disordered systems such as wave
propagation in random media (radar scattering, mobile
phones,...) [17,18]. A specially relevant example of the lat-
ter is transport through 1D disordered insulating wires for
which the distribution of elementary resistances has been
shown to be lognormal [19]. This wire problem of random
resistances in series is equivalent to the tunnel junction
problem of random conductances in parallel [20]. Thus,
our results, initially motivated by sums of lognormal con-
ductances in tunnel junctions, are also relevant for sums
of lognormal resistances in wires.

In this paper, our aim is to obtain analytical expres-
sions for the dependence on the number n of terms of
the typical sums St

n of identically distributed lognormal
random variables. The theory must treat the n and σ2

ranges relevant for applications. For tunnel junctions, both
small n � 1 corresponding to nanometric sized junc-
tions [12] and large n � 1013 corresponding to millimet-
ric sized junctions, and both small σ2 � 0.1 and large
σ2 � 10 [7,21–23] have been studied experimentally. For
electromagnetic propagation in random media, σ2 is typ-
ically in the range 2 to 10 [18].

There exist recent mathematical studies on sums of
lognormal random variables [24,25] that are motivated
by glass physics (Random Energy Model). However, these
studies apply to regimes of large n and/or large σ2 that
do not correspond to those relevant for our problems. Our
work concentrates on the deviation of the typical sum of
a moderate number of lognormal terms with σ2 � 15 from
the asymptotic behaviour dictated by the law of large
numbers. Thus, this paper and [24,25] treat complemen-
tary

(
n, σ2

)
ranges.

Section 2 is a short review of the basic properties of
lognormal distributions, insisting on their broad character.

Section 3 presents qualitatively the sums of n lognormal
random variables. Section 4 introduces the strategies used
to estimate the typical sum St

n. Section 5, the core of this
work, derives approximate analytical expressions of St

n for
different σ2-ranges. Section 6 discusses the range of valid-
ity of the obtained results. Section 7 presents the striking
scaling behaviour of the sample mean inverse. Section 8
contains a summarizing table and an overview of main
results.

As the paper is written primarily for practitioners of
quantum tunnelling, it reintroduces in simple terms the
needed statistical notions about broad distributions. How-
ever, most of the paper is not specific to quantum tun-
nelling and its results may be applied to any problem with
sums of lognormal random variables. The adequacy of the
presented theory to describe experiments on tunnel junc-
tions is presented in [9].

2 The lognormal distribution: simple
properties and narrow vs. broad character

In this section, we present simple properties (genesis, char-
acteristics, broad character) of the lognormal distribution
that will be used in the next sections.

Among many mechanisms that generate lognormal dis-
tributions [15,16], two of them are especially important in
physics. In the first generation mechanism, we consider x
as exponentially dependent on a Gaussian random vari-
able y with mean µy and variance σ2

y :

x = x0ey/y0 (5)

where x0 and y0 are scale parameters for x and y, respec-
tively. The probability density of y is:

N(µy , σ2
y)(y) =

1√
2πσ2

y

exp

[
− (y − µy)2

2σ2
y

]
· (6)

The probability density of x, f(x) = N(µy , σ2
y)(y)dy/dx

is a lognormal density LN
(
µ, σ2

)
(x), as in equation (4),

with parameters:

µ =
µy

y0
+ lnx0, (7a)

σ2 = (σy/y0)
2 . (7b)

A typical example of such a generation mechanism is pro-
vided by tunnel junctions. Indeed, the exponential current
dependence on the potential barrier parameters operates
as a kind of ‘fluctuation amplifier’ by non-linearly trans-
forming small Gaussian fluctuations of the parameters into
qualitatively large current fluctuations. This implies, as
seen above, lognormal distribution of tunnel currents [9].

In the second generation mechanism, we consider the
product xn =

∏n
i=1 yi of n identically distributed random
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variables y1, · · · , yn. If µ′ and σ′ are the mean and the
standard deviation of ln yi, not necessarily Gaussians, then

ln xn =
n∑

i=1

ln yi (8)

tends, at large n, to a Gaussian random variable of mean
nµ′ and variance nσ′2, according to the central limit theo-
rem. Hence, using equations (7a) and (7b) with x0 = y0 =
1, xn is lognormally distributed with parameters µ = nµ′

and σ2 = nσ′2. For a better approximation at finite n,
see [26].

The lognormal distribution given by equation (4) has
the following characteristics.

The two parameters µ and σ2 are, according to equa-
tions (7a) and (7b) with x0 = y0 = 1, the mean and the
variance of the Gaussian random variable lnx. The pa-
rameter µ is a scale parameter. Indeed, if x is distributed
according to LN(µ, σ2)(x), then x′ = αx is distributed
according to LN(µ′ = µ + ln α, σ′2 = σ2)(x′), as can be
seen from equations (5), (7a) and (7b). Thus, one can al-
ways take µ = 0 using a suitable choice of units. On the
other hand, σ2 is the shape parameter of the lognormal
distribution.

The typical value xt, corresponding to the maximum
of the distribution, is

xt = eµ−σ2
. (9)

The median, xm, such that
∫ xm

0
f(x)dx =

∫ ∞
xm f(x)dx =

1/2, is
xm = eµ. (10)

The average, 〈x〉, and the variance, var (x) ≡ 〈x2〉 − 〈x〉2,
are

〈x〉 = eµ+σ2/2, (11)

var (x) = e2µ+σ2
(
eσ2 − 1

)
. (12)

The coefficient of variation, C ≡ √
var (x)/〈x〉, which

characterizes the relative dispersion of the distribution,
is thus

C =
√

eσ2 − 1. (13)

Note that µ does not appear in C, as expected for a scale
parameter.

Figure 1 shows examples of lognormal distributions
with scale parameter µ = 0 and different shape param-
eters. For small σ2, the lognormal distribution is nar-
row (rapidly decaying tail) and can be approximated by
a Gaussian distribution (see Appendix A). When σ2 in-
creases, the lognormal distribution rapidly becomes broad
(tail extending to values much larger than the typical
value). In particular, the typical value xt and the mean
〈x〉 move in opposite directions away from the median
xm which is 1 for all σ2. The strong σ2-dependence of
the broadness is quantitatively given by the coefficient of
variation, equation (13).
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Fig. 1. Examples of lognormal distributions LN
(
µ, σ2

)
(x)

with µ = 0 and σ = 0.1, 1 and 1.5. When σ increases, the
typical values xt, indicated by the dotted lines, and the means
〈x〉 move rapidly away from the constant median xm, indicated
by the broken line, in opposite directions.

Another way of characterizing the broadness of a dis-
tribution, is to define an interval containing a certain per-
centage of the probability. For the Gaussian distribution
N

(
µ, σ2

)
, 68% of the probability is contained in the in-

terval [µ − σ, µ + σ] whereas for the lognormal distribu-
tion LN

(
µ, σ2

)
, the same probability is contained within

[xm/eσ, xm × eσ]. The extension of this interval depends
linearly on σ for the Gaussian and exponentially for the
lognormal.

Moreover, the weighted distribution xf (x), giving the
distribution of the contribution to the mean, is peaked on
the median xm. In the vicinity of xm one has [27]:

f(x) =
1√

2πσ2x
for eµ−√

2σ � x � eµ+
√

2σ. (14)

Thus, f (x) behaves as a distribution that is extremely
broad (1/x is not even normalizable) in an x-interval
whose size increases exponentially fast with σ and that
is smoothly truncated outside this interval.

Three different regimes of broadness can be defined us-
ing the peculiar dependence of the probability peak height
f (xt) on σ2. Indeed, the use of equations (4) and (9)
yields:

f(xt) =
eσ2/2

√
2πeµσ

· (15)

For σ2 � 1, one has f(xt) ∝ 1/σ and thus f(xt) ∝
1/

√
var (x) as

√
var (x) ∝ σ (see Eq. (12)). This inverse

proportionality between peak height f(xt) and peak width√
var (x) is the usual behaviour for a narrow distribution

that concentrates most of the probability into the peak.
When the shape parameter σ2 increases, still keep-

ing σ2 ≤ 1, f(xt) is no longer inversely proportional to√
var (x), however it still decreases, as expected for a dis-

tribution that becomes broader and thus less peaked (see,
in Fig. 1, the difference between σ = 0.1 and σ = 1).

On the contrary, when σ2 > 1, the peak height in-
creases with σ2 even though the distribution becomes
broader (see, in Fig. 1, the difference between σ = 1 and
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σ = 1.5). This is more unusual. The behaviour of the peak
can be understood from the genesis of the lognormal vari-
able x = ey with y distributed as N

(
µy = µ, σ2

y = σ2
)
(y).

When σ2 becomes larger, the probability to draw y val-
ues much smaller than µ increases, yielding many x values
much smaller than eµ, all packed close to 0. This creates
a narrow and high peak for f(x).

This non monotonous variation of the probability peak
f(xt) with the shape parameter σ2 with a minimum in
σ2 = 1, incites to consider three qualitative classes of
lognormal distributions, that will be used in the next
sections. The class σ2 � 1 corresponds to the narrow
lognormal distributions that are approximately Gaussian.
The class σ2 � 1 contains the moderately broad log-
normal distributions that may deviate significantly from
Gaussians, yet retaining some features of narrow distribu-
tions. The class σ2 
 1 contains the very broad lognor-
mal distributions.

3 Qualitative behaviour of the typical sum
of lognormal random variables

In this section we explain the qualitative behaviour of the
typical sum of lognormal random variables by relating it
to the behaviours of narrow and broad distributions.

Consider first a narrow distribution fN(x) presenting a
well defined narrow peak concentrating most of the prob-
ability in the vicinity of the mean 〈x〉 and with light tails
decaying sufficiently rapidly away from the peak (Fig. 2a).
Draw, for example, three random numbers x1, x2 and x3

according to the distribution fN(x). If fN(x) is sufficiently
narrow, then x1, x2 and x3 will all be approximately equal
to each other and to the mean 〈x〉 and thus,

S3 = x1 + x2 + x3 � 3x1, 2 or 3 � 3〈x〉· (16)

Note that no single term xi dominates the sum S3. More
generally, the sum of n terms will be close, even for small
n’s, to the large n expression given by the law of large
numbers:

Sn � n〈x〉· (17)

Consider now a broad distribution fB(x) whose proba-
bility spreads throughout a long tail extending over several
decades (Fig. 2b; note the logarithmic x-scale) instead of
being concentrated into a peak. Drawing three random
numbers according to fB(x), it is very likely that one of
these numbers, for example x2, will be large enough, com-
pared to the other ones, to dominate the sum S3:

S3 = x1 + x2 + x3 � max(x1, x2, x3) = x2. (18)

More generally, the largest term Mn,

Mn ≡ max(x1, . . . , xn), (19)

will dominate the sum of n terms:

Sn � Mn. (20)

Fig. 2. Narrow vs. broad distributions. (a) A narrow distri-
bution fN(x) presents a well defined peak and light tails. In a
set {x1, . . . , xn} of n random numbers drawn from fN(x), no
number is dominant. (b) A broad distribution fB(x) presents
a long tail extending over several decades (note the logarith-
mic x-scale). In a set {x1, . . . , xn} of n random numbers drawn
from fB(x), one number is clearly dominant.

Under these premises, what is the order of magnitude
of Sn? To approximately estimate it, one can divide the
interval [0;∞) of possible values of x 1 into n intervals
[a1 = 0; a2), [a2; a3), ..., [an; an+1 = ∞) corresponding to
a probability of 1/n:

1
n

=
∫ aj+1

aj

fB(x) dx . (21)

Intuitively, there is typically one random number xi in
each interval [aj ; aj+1). The largest number Mn is thus
very likely to lie in the rightmost interval [an;∞). The
most probable number in this interval is an (we assume
that fB(x) is decreasing at large x). Thus, applying equa-
tion (20) the sum Sn is approximately given by:

Sn � an with
1
n

=
∫ ∞

an

fB(x) dx. (22)

1 We assume for simplicity that x is positive.
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Fig. 3. Heterogeneity of the terms of lognormal sums. (a)
Average proportion pq of the average physical quantity 〈x〉
carried by the average proportion q of the statistical sample.
For narrow lognormal distributions

(
σ2 � 1

)
, all terms equally

contribute to the sums (pq � q). For broad lognormal distribu-
tions, a small proportion of the terms provide the major con-
tribution to the sums (pq � q for q � 1). (b) Gini coefficient
giving a quantitative measure of the heterogeneity.

As a specific application, consider for example a Pareto
distribution fP(x) with infinite mean,

fP(x) ≡ αxα
0

x1+α
, for x ≥ x0 and with 0 < α < 1.

(23)
In this case, the sum Sn is called a “Lévy flight”. The
relation (22) yields2 M t

n � x0n
1/α and thus, using equa-

tion (20),
St

n � x0n
1/α. (24)

Note that, as α < 1, the average value is infinite and thus
the law of large numbers does not apply here.

The fact that the sum Sn of n terms increases typi-
cally faster in equation (24) than the number n of terms
is in contrast with the law of large numbers. This ‘anoma-
lous’ behaviour can be intuitively explained (see also Fig. 3
in [9] for a complementary approach). Each draw of a new
random number from a broad distribution fB(x) gives the
opportunity to obtain a large number, very far in the tail,

2 A rigorous derivation of M t
n based on order statistics gives

M t
n = x0

(
1+αn
1+α

)1/α

(see, e.g., equation (4.32) in [34]). This

expression is close to equation (24), which consolidates the
intuitive reasoning based on equation (22) to derive M t

n.

that will dominate the sum Sn and will push it towards
significantly larger values. Conversely, for narrow distri-
butions fN(x), the typical largest term M t

n increases very
slowly with the number of terms (e.g., as

√
ln n for a Gaus-

sian distribution and as lnn for an exponential distribu-
tion; see, e.g., [28]), whilst the typical sum St

n increases
linearly with n and thus St

n 
 M t
n.

The question that arises now is whether the sum of log-
normal random variables behaves like a narrow or like a
broad distribution. On one hand, the lognormal distribu-
tion has finite moments, like a narrow distribution. There-
fore, the law of large numbers must apply at least for an
asymptotically large number of terms: Sn →

n→∞ n〈x〉. On

the other hand, if σ2 is sufficiently large, the lognormal tail
extends over several decades, as for a broad distribution
(see Sect. 2). Therefore, the sum of n terms is expected to
be dominated by a small number of terms, if n is not too
large3.

The domination of the sum by the largest terms can be
quantitatively estimated by computing the relative contri-
bution pq to the mean by the proportion q of statistical
samples with values larger than some xq

4,5

pq ≡
∫ ∞

xq

x′f(x′)dx′/〈x〉, (25)

q ≡
∫ ∞

xq

f(x′)dx′. (26)

Figure 3a shows a plot of pq vs. q for various σ’s. Note
that the curve (1 − q, 1 − pq) is called a Lorenz plot in the
economics community when studying the distribution of
incomes (see, e.g. [29]). For small σ’s (σ � 0.25), one has
pq � q for all q: all terms xi equally contribute to the sum
Sn. This is the usual behaviour of a narrow distribution.
For larger σ’s, one has pq 
 q for q � 1: only a small
number of terms contribute significantly to the sum Sn.
This is the usual behaviour of a broad distribution. Monte
Carlo simulations of tunnelling through MOSFET gates
yield pq vs. q curves that are strikingly similar to Figure 3a
(see Fig. 11 of [10]). Indeed, the parameters used in [10]
correspond to a barrier thickness standard deviation of
σd = 0.18 nm, a barrier penetration length λ � 7.8 ×
10−2 nm which gives σ = σd/λ � 2.3 (see [7] or [9] for the

3 This is distinct from the subexponential property. The
subexponentiality of the lognormal distribution [35] ensures
that asymptotically large sums Sn are dominated by the largest
term, for any n. Here on the contrary, we are interested in
the domination of the typical sum, which is by definition not
asymptotically large, by the largest term, a property that is
only valid for a limited n range.

4 The expressions of pq and q given by equation (25) and (26)
are meaningful for very large statistical samples, as they cor-
respond to average quantities. For small samples, statistically,
pq and q might deviate significantly from these expressions.

5 For tunnel junctions, the plot pq vs. q gives a measure of the
inhomogeneity corresponding to the so-called ‘hot spots’: pq is
the proportion of the average current carried by the proportion
q of the junction area with currents larger than xq.
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derivation of σ = σd/λ). For this σ, Figure 11 of [10] fits
our pq vs. q without any adjustable parameter.

As in economics, the information contained in Fig-
ure 3a can be summarized by the Gini coefficient G rep-
resented in Figure 3b:

G ≡ 2
∫ 1

0

(pq − q) dq, (27)

giving a quantitative measure of the heterogeneity
of the contribution of the terms to the sum. In
the lognormal case this expression becomes: G (σ) =
1 − 2

∫ ∞
−∞ N(0, 1) (u)Φ (u − σ) du, where N (0, 1) (u) is

the normal distribution (Eq. (6)) and Φ (u) ≡∫ u

−∞ N(0, 1) (u′) du′ the corresponding distribution func-
tion. The solid line in Figure 3b represents G (σ) for var-
ious σ’s. As expected, G (σ) varies from 0 when σ = 0,
which means that all terms of a narrow lognormal distri-
bution equally contribute to the sums, to 1 when σ → ∞,
which means that only a small proportion of the terms of
a broad lognormal distribution contributes significantly to
the sums. The broken lines in Figure 3b represent analyt-
ically derived asymptotic approximations of G (σ):

σ � 1 : G (σ) � σ√
π

(28a)

σ 
 1 : G (σ) � 1 − 2e−σ2/4

√
πσ

· (28b)

(Our derivations of these formulae, which are not ex-
plicitely shown here, are based on usual expansion tech-
niques.)

In summary, if σ2 is small, the sum of n lognormal
terms is expected to behave like sums of narrowly dis-
tributed random variables, for any n. Conversely, if σ2 is
sufficiently large, the sum of n lognormal terms is expected
to behave, at small n, like sums of broadly distributed
random variables and, at large n, like sums of narrowly
distributed random variables (law of large numbers). Be-
fore converging to the law of large numbers asymptotics,
the typical sum may deviate strongly from this law. More-
over, if this convergence is slow enough, physically relevant
problems may lie in the non converged regime. This is in-
deed the case of submicronic tunnel junctions [7].

4 Strategies for estimating the typical sum

In this section, we discuss strategies for obtaining the typ-
ical sum St

n of lognormal random variables depending on
the value of the shape parameter σ2.

By definition St
n is the peak position of the distribu-

tion of Sn. Moreover, the latter is the n-fold convolution
of f(x) and is denoted as fn∗(Sn). As no exact analytical
expression is known for fn∗ when f is lognormal, one will
turn to approximation strategies. These strategies can be
derived from the schematic representation, in the space
of distributions, of the trajectory followed by fn∗ with
increasing n (Fig. 4). The set of lognormal distributions

µ

σ 2

σ2<1∼

σ2<<1

σ2 >>1

µ2, σ2
2

Fig. 4. Schematic representation of the trajectory of fn∗ in
the space of distributions. The set of lognormal distributions
corresponds to the open half-plane

(
µ ∈ R, σ2 > 0

)
. The infi-

nite dimension space of probability distributions is schemat-
ically represented here in three dimensions. In the region(
µ ∈ R, σ2 � 1

)
(shaded area), lognormal distributions are

quasi-Gaussian. (a) Narrow lognormal distributions f1∗(σ2 �
1) are quasi-Gaussian and, thus, the trajectory of fn∗ starts
and ends up in the close vicinity of the line

(
µ ∈ R, σ2 = 0

)
.

(b) For moderately broad lognormal distributions (σ2 � 1),
the trajectory of fn∗ starts in the lognormal half-plane, not
too far away from the quasi-Gaussian region, that is reached
for asymptotically large n. Thus fn∗ is conjectured to lie, for
any n, close to the lognormal half-plane: fn∗ � LN(µn, σ2

n). (c)
Very broad lognormal distributions f1∗(σ2 � 1) lie far away
from the quasi-Gaussian region. Thus, there is a long way be-
fore fn∗ enters the quasi-Gaussian region and fn∗ has the pos-
sibility to come significantly out of the lognormal half-plane
for intermediate values of n.

can be represented by an open half-plane (µ, σ2) with
µ ∈ (−∞;∞) and σ2 ∈ (0;∞). In this half-plane, the
shaded region with σ2 � 1 corresponds to quasi-Gaussian
lognormal distributions (see Appendix A). The whole log-
normal half-plane is embedded in the infinite dimension
space of probability distributions, which is schematically
represented in Figure 4 as a three dimension space.

The starting point f1∗ and the asymptotic behaviour
fn∗ with n → ∞ of the fn∗ trajectory are trivially known
for any σ2. Indeed, f1∗ = f = LN(µ, σ2) lies exactly in
the lognormal half-plane. Moreover, the finiteness of the
moments of the lognormal distribution f1∗ = f implies
the applicability of the central limit theorem:

fn∗(Sn) →
n→∞ N

(
n〈x〉, nσ2

)
(Sn), (29)

where N
(
n〈x〉, nσ2

)
(Sn) is narrow since its coefficient of

variation
√

nσ2/n〈x〉 ∝ 1/
√

n tends to zero. As narrow
Gaussian distributions are quasi-lognormal, as shown in
Appendix A, fn∗ lies close to the quasi-Gaussian region
of the lognormal half-plane.

For intermediate n, on the contrary, the trajectory of
fn∗ strongly depends on the broadness of the initial log-
normal distribution f1∗ and three different cases can be
distinguished.

For narrow lognormal distributions (σ2 � 1), both
the starting point f1∗ and the end point fn∗ for n = ∞
belong to the quasi-Gaussian region. Therefore one can
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assume that fn∗ is quasi-Gaussian for any n, which gives
immediately the typical sums St

n (see Sect. 5.1).
For moderately broad lognormal distributions (σ2 �

1), fn∗ does not start too far away from the quasi-
Gaussian region that is reached at large n. Hence, one
can assume that fn∗ remains close to the lognormal half-
plane6 in between n = 1 and n = ∞. Thus, the approxi-
mation strategy will consist in finding a lognormal distri-
bution LN(µn, σ2

n) (see broken line in Fig. 4) that closely
approximates fn∗ (see Sect. 5.2).

For very broad lognormal distributions (σ2 
 1), fn∗
starts far away from the quasi-Gaussian region that is
reached at large n. Hence, fn∗ may significantly come out
of the lognormal half-plane. In this case, the approxima-
tion strategy is dictated by the fact that sums Sn are
dominated by the largest terms (see Sect. 5.3).

5 Derivation of the typical sums of lognormal
random variables

In this section we apply the strategies discussed above in
order to derive approximate analytical expressions of St

n
for different ranges of σ2.

5.1 Case of narrow lognormal distributions

We consider here the case σ2 � 1 of narrow lognormal
distributions. As seen in Appendix A, a narrow lognormal
distribution is well approximated by a normal distribu-
tion:

σ2 � 1 : LN
(
µ, σ2

) � N
(
eµ, (σeµ)2

)
.

Consequently, the typical sum St
n is simply given by:

σ2 � 1 : St
n � neµ (30)

as in the Gaussian case, for any number of terms. Note
that the law of large numbers asymptotics St

n → n〈x〉 =

neµ+σ2/2, close to equation (30) for σ2 � 1, is applicable
here even for a small number of terms.

5.2 Case of moderately broad lognormal distributions

We consider here the case σ2 � 1 of moderately broad log-
normal distributions that already allows considerable de-
viation from the Gaussian behaviour obtained for σ2 � 1
(see Sect. 5.1). The distribution fn∗ of Sn is now conjec-
tured to be close to a lognormal distribution:

σ2 � 1 : fn∗ (Sn) � LN
(
µn, σ2

n

)
(Sn) . (31)

Two equations characterizing fn∗ are needed to determine
the two unknown parameters µn and σ2

n.

6 The family of lognormal distributions is not closed under
convolution. Thus, it is clear that fn∗ is not exactly lognormal.

The cumulants provide such exact relationships
on fn∗. In particular, the first two cumulants7, 〈Sn〉 and
var (Sn) obey:

〈Sn〉 = n〈x〉 (32a)

var (Sn) = nvar (x) . (32b)

These equations imply

C2
n =

C2

n
, (33)

where Cn ≡ [var (Sn)]1/2
/〈Sn〉 is the coefficient of varia-

tion of Sn
8. As f is lognormal and fn∗ is approximately

lognormal, one has C2 = eσ2 − 1 and C2
n = eσ2

n − 1 (see
Eq. (13)). Then, using equation (33), we obtain

σ2
n = ln

(
1 +

eσ2 − 1
n

)
= ln

(
1 +

C2

n

)
· (34)

At last, we derive µn by developing equation (32a) using
equation (11):

eµn+σ2
n/2 = neµ+σ2/2. (35)

Thus, thanks to equation (34), one has:

µn = µ +
σ2

2
+ ln


 n√

1 + eσ2−1
n




= ln (n〈x〉) − 1
2

ln
(

1 +
C2

n

)
· (36)

In the remainder of this section, we will examine the
consequences of equations (34) and (36) on the typical
sum St

n, on the height of the peak of fn∗ and on the con-
vergence of fn∗ to a Gaussian.

The typical sum St
n derives from equations (34), (36)

and (9):

σ2 � 1 : St
n � n〈x〉 1(

1 + C2

n

)3/2
· (37)

7 The choice of the first two cumulants results from a com-
promise. We are looking for the typical value St

n = eµn−σ2
n of

fn∗ � LN
(
µn, σ2

n

)
which is smaller than both 〈Sn〉 = eµn+σ2

n/2

and 〈S2
n〉1/2 = eµn+σ2

n . Therefore, the first two cumulants, 〈Sn〉
and var (Sn) (involving 〈S2

n〉), give informations on two quan-
tities larger than St

n. It would have been preferable to use one
quantity larger and another one smaller than St

n, but this is
not possible with cumulants. Hence, the least bad choice is to
take the cumulants that involve the quantities 〈Sk

n〉1/k that are
the least distant from St

n, i.e., the cumulants of lowest order:
〈Sn〉 and var (Sn). Similar uses of cumulants to find approx-
imations of the n-fold convolution of lognormal distributions
have also been proposed in the context of radar scattering [36]
and mobile phone electromagnetic propagation [17].

8 Physically, equation (33) corresponds to the usual decrease
as 1/

√
n of the relative fluctuations Cn with the size n of the

statistical sample.
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The typical sum St
n appears as the product of the usual

law of large numbers, n〈x〉, and of a ‘correction’ factor,
(1+C2/n)−3/2, which can be very large. The square of the
coefficient of variation defines a scale for n: when n 
 C2,
the law of large numbers approximately holds, whereas
when n � C2, the law of large numbers grossly overesti-
mates St

n. If the initial lognormal distributions is broader,
C2 is larger and, thus, larger n’s are required for the law
of large numbers to apply. We analyze now more precisely
the small n and large n behaviours.

For n = 1, equation (37) gives St
1 � eµ−σ2

which is, as
it should be, the exact expression for the typical value xt

of a single lognormal term (see Eq. (9)). For small n, we
obtain

n � C2 : St
n � n5/2 〈x〉

C3
, (38)

i.e., a much faster dependence on n then in the usual law
of large numbers; this evokes a Lévy flight with exponent
α = 2/5 (see Eq. (24)). For large n, the expression equa-
tion (37) expands into 9:

n 
 C2 : St
n � n〈x〉 − 3

2
C2〈x〉· (39)

The practical consequences of these expressions appear
clearly on the sample mean Yn:

Yn ≡ Sn

n
· (40)

Equation (38) and (39) give the typical sample mean Y t
n :

n � C2 : Y t
n �

( n

C2

)3/2

〈x〉 (41a)

n 
 C2 : Y t
n � 〈x〉 − 3

2
C2

n
〈x〉· (41b)

Thus, for small systems
(
n � C2

)
, one has Y t

n � 〈x〉.
In other words, the sample mean of a small system does
not typically yield the average value. For instance, if
σ2 = 4, Y t

1 � 〈x〉/400. This is important, e.g. for tunnel
junctions [9] and contradicts common implicit assump-
tions [30,31]. For large systems (n 
 C2), one recovers
the average value. However, the correction to the average
value decreases slowly with n, as 1/n, and might be mea-
surable even for a relatively large n10. Thus, macroscopic
measurements may give access to microscopic fluctuations,
which is important for physics applications. Usually, mi-
croscopic fluctuations average out so that they can not
easily be extracted from macroscopic measurements. This
property, often taken for granted, comes from the fast con-
vergence of sums Sn to the law of large numbers asymp-
totics, which only occurs with narrow distributions.

We consider now the peak height gn(Y t
n) of the distri-

bution
gn(Yn) ≡ nfn∗(Sn) (42)

of the sample mean Yn (Fig. 5). Combining equation (15)
9 The subleading term

(
3C2〈x〉/2)

may not be the best ap-

proximation for n � C2 (see [25]).
10 This may explain why anomalous scaling effects have been
observed in tunnel junctions as large as 10 × 10 µm2 [8,33].
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0.1

1

10

100

g n(Y
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σ = 2

σ = 1.5

Fig. 5. Peak height gn(Y t
n) of the distribution of the sam-

ple mean Yn = Sn/n. Initial lognormal distribution: LN(µ =
0, σ2). For narrow lognormal distributions (σ2 < 1/2), gn(Y t

n)
always increases with n (normal behaviour). For broader log-
normal distributions (σ2 > 1/2), gn(Y t

n) presents an unusual
decrease with n at small n indicating that the peak of gn(Yn)
broadens, even if its far tail becomes lighter as usual.

and equation (31) via equations (34) and (36) gives:

gn(Y t
n) =

1 + C2/n√
2π〈x〉√ln(1 + C2/n)

· (43)

A simple study, for the non trivial case σ2 > 1/2, reveals
that gn(Y t

n) decreases from n = 1 to n = C2/(e1/2 − 1)
(> 1) and then increases for larger values of n. This echoes
the non-monotonous dependence on σ2 of the peak height
of a lognormal distribution f (see Eq. (15)) and related
comments). The increase at large n simply corresponds
to the narrowing of the distribution of Yn = Sn/n when
n increases, as predicted by the law of large numbers.
Moreover, the large n expansion of equation (43) gives
gn(Y t

n) �
√

n√
2πvar(x)

, which is the prediction of the cen-

tral limit theorem, as it should be. On the other hand,
the decrease of gn(Y t

n) at small n is less usual. The peak
of gn(Yn) is actually broader than the one of the uncon-
voluted distribution g1 = f . This behaviour can be un-
derstood in the following way. If the lognormal distri-
bution f(x) is broad enough (C2 
 1), it presents at
the same time a high and narrow peak at small x and
a long tail at large x. The effect of convoluting f with
itself is first (n < C2/(e1/2 − 1)) to ‘contaminate’ the
peak with the (heavy) tail. This results in a broadening
and decrease of the fn∗(Sn) peak which is strong enough
to entail a decrease of the gn(Yn) = nfn∗(Sn) peak. On
the contrary, when enough convolutions have taken place
(n > C2/(e1/2 − 1)), the shape parameter σ2

n (Eq. (34))
becomes small and the tail of fn∗ becomes light. Under
these circumstances, further convolution mainly ‘mixes’
the peak with itself. This results in a broadening and de-
crease of the fn∗(Sn) peak which is weak enough to allow
an increase of the gn(Yn) = nfn∗(Sn) peak.

The small n decrease of gn(Yn) has physical con-
sequences. There is a range of sample sizes, corre-
sponding to n < C2/(e1/2 − 1) for which the precise
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determination of the typical values becomes more difficult
when the sample size increases. This is a striking effect of
the broad character of the lognormal distribution11. On
the contrary, for narrow distributions, the determination
of the typical value becomes more accurate as the sample
size increases.

At last, we examine the compatibility of the obtained
fn∗ with the central limit theorem by studying the distri-
bution hn(Zn) = fn∗(Sn)dSn/dZn of the usual rescaled
random variable Zn:

Zn ≡ Sn − n〈x〉√
n var (x)

· (44)

Simple derivations using equations (13) and (11) lead to

hn(Zn) � C√
2πn ln

(
1 + C2

n

) (
1 + CZn√

n

)

× exp




−
[
ln

(
1 + CZn√

n

)
+ 1

2 ln
(
1 + C2

n

)]2

2 ln
(
1 + C2

n

)

 · (45)

For n 
 C2 and |CZn/
√

n| � 1, one has ln(1 + C2/n) �
C2/n and ln(1 + CZn/

√
n) � CZn/

√
n − (CZn)2/2n,

which gives:

hn(Zn) � 1
√

2π
(
1 + CZn√

n

)

× exp




−
[
Zn + C

2
√

n

(
1 − Z2

n

)]2

2


 · (46)

Clearly, the central limit theorem is recovered12:

hn(Zn) → 1√
2π

e−Z2
n/2 when n → ∞, (47)

consistently with the strategy defined in Section 4 (see
Eq. (29)). Moreover, the square of the coefficient of vari-
ation appears in equation (46) as the convergence scale
of fn∗ to the central limit theorem. As shown in equa-
tion (37), C2 is also the convergence scale of St

n to the
law of large numbers.
11 This effect is also obtained for other broad distributions
like, for example, the Lévy stable law Lα(x) with index 0 <
α < 1 such that 〈x〉 = ∞. From Lévy’s generalized central limit
theorem, the distribution of Sn/n1/α is Lα itself so that the
distribution ln∗(Sn/n) is n1−1/αLα(n1−1/αSn/n). As α < 1,
one has 1−1/α < 0 and the peak height of ln∗(Sn/n) decreases
with n.
12 The convergence to the central limit theorem can also be
derived less formally if one requires only the leading order
of hn(Zn). Indeed, equation (34) implies σ2

n � C2/n when
n → ∞. Thus, σ2

n → 0 when n → ∞, equation (A.6) ap-
plies: when n → ∞, fn∗ � LN(µn, σ2

n) � N
(
eµn , (σneµn )2

) �
N(n〈x〉, nvar (x)) since µn � ln(n〈x〉) (see Eq. (36)). This
agrees with the central limit asymptotics of equation (47).

5.3 Case of very broad lognormal distributions

We consider here the case σ2 
 1 of very broad lognormal
distributions. To treat this complex case, we will proceed
through different steps, in a more heuristic way than in
the previous cases.

The first step is to assume that the sums Sn are typ-
ically dominated by the largest term Mn, if n is not too
large (see Eq. (20) and Sect. 3)13. Thus, the distribution
function of Sn, defined as the probability that Sn < x and
denoted as Pr (Sn < x), is approximately equal to the dis-
tribution function of Mn, denoted as Pr (Mn < x):

σ2 
 1 : Pr (Sn < x) � Pr (Mn < x) . (48)

As Mn is the largest term of all xi’s, Mn < x is equivalent
to xi < x for all i = 1, . . . , n. Thus,

Pr (Mn < x) = Pr (x1 < x) × · · · × Pr (xn < x)

= [F (x)]n (49)

where F (x) ≡ ∫ x

0
f(x′)dx′ is the distribution function of

the initial lognormal distribution. This implies

Pr (Sn < x) � [F (x)]n , (50)

see14. By definition, the typical sum St
n is given by

d2Pr (Sn < x)/dx2 = 0, which, from equation (50), leads
to:

− (σ + yn)
√

2πΦ (yn) + (n − 1) e−y2
n/2 = 0 (51)

where yn ≡ (ln St
n − µ) /σ and Φ (y) ≡

(2π)−1/2 ∫ y

−∞ e−u2/2du is the distribution function of the
standard normal distribution N (0, 1). This equation has
no exact explicit solution. However, as y1 = −σ � −1
(use Eq. (9) with St

1 = xt), let us assume that yn � −1
also for n > 1. Then we can approximate Φ (yn) by
Φ (yn) � −e−y2

n/2/
√

2πyn (see, e.g. [32], Chap. 26). This
leads to a linear equation on yn, giving yn � −σ/n, valid
for yn � −1, i.e., n < σ. Finally, one has:

σ2 
 1, n < σ : St
n � eµ−σ2/n. (52)

For n = 1 this expression is exact. When n increases till
n = σ2, equation (52) gives an unusually fast, exponential
dependence on n that is in contrast with, e.g. the n5/2

dependence obtained for σ2 � 1 and n � C2 (Eq. (38)).
Unfortunately, when n becomes larger, equation (52) is
qualitatively wrong. Indeed, it implies St

n/n → eµ/n → 0
instead of St

n/n → 〈x〉 as predicted by the law of large
numbers.
13 Estimating the typical sum Sn is then, in principle, an
extreme value problem; however, usual extreme value theo-
ries [28] apply only for irrelevantly large n such that Sn � Mn

is no longer valid.
14 A similar expression can be found without justification
in [17], equation (16). A numerical study of this expression
is presented in [18].
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The second step, improving equation (52), consists
in combining equation (52) with a cumulant constraint.
We assume that fn∗ � LN

(
µn, σ2

n

)
as in Section 5.2

for all n = 2j , with j = 1, 2, . . . and that the typical
sum St

2j+1 is eµ2j −σ2
2j /2 as in equation (52) since S2j is

considered as lognormal. We use these assumptions and
〈S2j+1〉 = 2j+1〈x〉 to determine induction relations be-
tween

(
µ2j+1 , σ2

2j+1

)
and

(
µ2j , σ2

2j

)
, which leads to:

σ2
2j =

(
2
3

)j

σ2 + 2
[
1 −

(
2
3

)]
ln 2, (53a)

µ2j = µ +
(

σ2

2
− ln 2

) [
1 −

(
2
3

)j
]

+ j ln 2. (53b)

The typical sum is then

St
n �

n〈x〉 exp
[
−3

2
σ2

nln(3/2)/ ln 2
− 3 ln 2

(
1 − 1

nln(3/2)/ ln 2

)]
·

(54)

Equation (54) is still exact for n = 1 and it clearly im-
proves on equation (52) for large n. Indeed, when n → ∞,
St

n/n no longer tends to 0. However, St
n/n tends to 〈x〉/8

instead of 〈x〉, which is the signature of a leftover problem.
This comes from the assumptions that fn∗ � LN

(
µn, σ2

n

)
,

which may be correct for large n (small σ2
n) but is exces-

sive for small n (large σ2
n), and that St

2j+1 � eµ2j −σ2
2j /2,

which is correct for small n = 2j (large σ2
n) but is excessive

for large n (small σ2
n).

The third step, in order to cure the main problem of
equation (54), is to wildly get rid of the last term in the
exponential which prevents St

n from converging to n〈x〉 at
large n, which does not affect the validity for n = 1:

σ2 
 1 : St
n � n〈x〉 exp

[
−3

2
σ2

nln (3/2)/ ln 2

]
· (55)

We have tried to empirically improve this formula by
looking for a better exponent α than ln (3/2)/ ln 2 for
σ2 ∈ [0.25, 16]. Unfortunately, no single α value is ade-
quate for all σ’s. Equation (55) with α = ln (3/2)/ ln 2
stands up as a good compromise for the investigated σ-
range.

6 Range of validity of formulae

In this section we proceed to the numerical determination
of the range of validity of the three theoretical formulae
given by equations (30), (37) and (55) for the typical sum
of n lognormal terms.

In order to fulfil this task, the typical sample mean Y t
n

(Eq. (40)) instead of St
n will be used. This has the advan-

tage of showing only the discrepancies to the mean value
without the obvious proportionality of St

n on n resulting
from the law of large numbers. The values of Y t

n computed
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g n(Y
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g
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g
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g
64 g

512

g
4096

x
t 〈x〉

Fig. 6. Distributions gn(Yn) of the sample mean Yn for an
initial lognormal with µ = 0 and σ = 1.5.

using the three theoretical formulae equations (30), (37)
and (55) are called Y t

n,I, Y t
n,II and Y t

n,III respectively:

σ2 � 1 : Y t
n,I = eµ, (56a)

σ2 � 1 : Y t
n,II = 〈x〉

(
1 +

C2

n

)−3/2

, (56b)

σ2 
 1 : Y t
n,III = 〈x〉 exp

[
−3

2
σ2

nln(3/2)/ ln 2

]
· (56c)

The exact typical sample mean, derived from Monte Carlo
generation15 of the distributions gn(Yn), is called Y t

n,ex.
Enough Monte-Carlo draws ensure negligible statistical
uncertainty. As an example, we show in Figure 6 the ob-
tained distributions gn(Yn) for µ = 0 and σ = 1.5. No-
tice that Y t

n,ex moves from Y t
1,ex = xt = e−σ2 � 0.11 to

Y t
∞,ex = 〈x〉 = eσ2/2 � 3.08. To determine the Y t

n,ex’s,
shown as solid line in Figure 7, the absolute maximum
of gn(Yn) is obtained by parabolic least square fits per-
formed on the log / log representation of each distribu-
tion 16. Moreover, in the latter figure, we also show Y t

n,I

(dots), Y t
n,II (circles) and Y t

n,III (squares).
To determine the validity range of the theoretical for-

mulae, we define two error estimators. The first one is
the maximum relative error δrel,(I, II, or III), i.e., the
maximum deviation referred to the minimum between
Y t

n,(I, II, or III) and Y t
n,ex, which is defined as follows:

δrel,i ≡ max

(
Y t

n,i − Y t
n,ex

Y t
n,ex

,
Y t

n,ex − Y t
n,i

Y t
n,i

; n = 1, 2, . . .

)

(57)

15 Standard numerical integration techniques to estimate the
n-fold convolution of f are impractical for broad distributions.
On the contrary, the Monte Carlo scheme can naturally handle
the coexistence of small and large numbers [6].
16 A lognormal distribution reduces to a parabola in its
log / log representation.
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Fig. 7. Y t
n,ex (solid line) for an initial σ = 1.5 (µ = 0) as

well as Y t
n,I (σ2 � 1, dots), Y t

n,II (σ2 � 1, circles) and Y t
n,III

(σ2 � 1, squares).

and can be transformed into:

δrel,i = max

[
e

∣∣∣∣ln
(

Y t
n,i

Y t
n,ex

)∣∣∣∣ − 1; n = 1, 2, . . .

]
. (58)

The second one is the maximum scale error
δscale,(I,II or III), i.e., the maximum deviation in magni-
tude referred to the total amplitude of the phenomenon:

δscale,i ≡ max

[∣∣∣∣∣ ln
(
Y t

n,i/Y t
n,ex

)
ln

(
Y t∞,ex/Y t

1,ex

)
∣∣∣∣∣ ; n = 1, 2, . . .

]
. (59)

Using equation (9) for Y t
1,ex and equation (17) for Y t∞,ex,

δscale,i boils down to:

δscale,i = max

[∣∣∣∣∣2 ln
(
Y t

n,i/Y t
n,ex

)
3σ2

∣∣∣∣∣ ; n = 1, 2, . . .

]
. (60)

Remark that δrel,i = exp
(

3σ2

2 δscale,i

)
−1. The first step for

computing δrel,i and δscale,i is thus to find the value of n for
which

∣∣ln (
Y t

n,i/Y t
n,ex

)∣∣ is maximum. For the data shown
in Figure 7, we find n = 1 for equation (56a), n = 4 for
equation (56b) and n = 4 for equation (56c), which gives
δrel,I = 849% (δscale,I = 67%), δrel,II = 61% (δscale,II =
14%) and δrel,III = 31% (δscale,III = 8%).

To work out the dependences of δrel,i (Fig. 8) and
δscale,i (Fig. 9) as functions of σ, the same kind of cal-
culation is performed for σ ∈ (0, 4] which is the relevant
range for the chosen physics applications. The dotted lines
representing δrel,I and δscale,I show that the first theoreti-
cal formula is the least accurate in the explored σ range.
However, for its domain of application, σ2 � 1, the er-
ror is acceptable for δrel,I (δrel,I � σ2, see 17). Indeed,
δrel,I � 7% for σ ∈ [0, 0.25] which, in turn, means that

17 The quantity δrel,I can be computed analytically. In-
deed, Y t

n,I = eµ does not depend on n and Y t
n,ex is bound

by Y t
1,ex = eµ−σ2

and Y t
∞,ex = eµ+σ2/2. Thus δrel,I =

max
(
eσ2 − 1, eσ2/2 − 1

)
= eσ2 − 1. This implies δscale,I = 2/3

for any σ2, in agreement with Figure 9.
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Fig. 9. Maximum scale errors δscale,i as function of σ.

lognormal distributions are quasi-Gaussian in this range
(see shaded area in Fig. 4). The solid lines representing
δrel,II and δscale,II show that the second theoretical for-
mula is the most accurate in the range 0 ≤ σ � 1.25
giving δrel,II � 30% and δscale,II � 10%. Note that good
tunnel junctions fall within this σ range. The broken lines
representing δrel,III and δscale,III show that the third the-
oretical formula is the most accurate for σ � 1.25 and is
reasonably accurate for σ � 1.25. Note that, for σ = 4,
the maximum relative error δrel,III � 400% appears quite
high. However, when the error is referred to the total am-
plitude of the scaling, as given by δscale,III, it is only 7%.

Importantly, the observed ranges of validity of the
three different formulae are consistent with the strategies
of approximation used to derive these formulae. This pro-
vides an a posteriori confirmation of the theoretical anal-
ysis presented in the paper.

7 A striking effect: scaling of the sample
mean and of its inverse

In general, if a function is increasing, its inverse is decreas-
ing. What happens if one considers the typical values of a
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random variable and of its inverse? Does one have:

zt
n ↗ ⇐⇒ (1/zn)t ↘ ? (61)

While this is intuitively true for narrow distributions, it
may fail for broad distributions.

This problem arises in electronics, where it is custom-
ary to study the product R × A of the device resistance
R by the device size A. One usually checks that R × A
does not depend on A, otherwise this dependence is taken
as the indication of edge effects. The resistance R being
the inverse of the conductance can be represented by 1/Sn

where Sn is the sum of n independent conductances. The
size A of the system is proportional to n. Hence, one has:

R × A ∝ n

Sn
=

1
Yn

, (62)

where Yn is the sample mean of conductances. We have
shown that the typical Yn increases with the sample
size (see Eqs. (56)), if conductances are lognormally dis-
tributed. Hence, R × A being proportional to the inverse
of Yn, one naively expects a decrease of the typical value
of R × A with n ∝ A.

What do the results presented in this paper imply for
the typical value of R×A? Let us do the correct calculation
in the case σ2 � 1, relevant for good tunnel junctions. As
fn∗ (Sn) � LN

(
µn, σ2

n

)
(Sn), the distribution of 1/Yn is:

LN
(−µn + lnn, σ2

n

)
(1/Yn) (63)

(see Sect. 2). The typical sample mean inverse is thus,
using equations (34) and (36):

σ2 � 1 : (1/Yn)t � 1

〈x〉 (
1 + C2

n

)1/2
· (64)

Thus just as Y t
n , (1/Yn)t increases with the sample size!

This counterintuitive result epitomizes the paradoxical
behaviour of some broad distributions. Moreover, this can
be a possible explanation for the anomalous scaling of R×
A observed for small magnetic tunnel junctions [33].

8 Conclusion

We have studied the typical sums of n lognormal random
variables. Approximate formulae have been obtained for
three different regimes of the shape parameter σ2. Table 1
summarizes these results with their ranges of applicability.
These results are relevant up to σ � 4; for larger σ, one
may apply the theorems in [24] and [25].

The anomalous behaviour of the typical sums has been
related to the broadness of lognormal distributions. For
large enough shape parameter σ2, the behaviour of log-
normal sums is non trivial. It reveals properties of broad
distributions at small sample sizes and properties of nar-
row distributions at large sample sizes with a slow tran-
sition between the two regimes. Counter-intuitive effects
have been pointed out like the decrease of the peak height

Table 1. Range of applicability of the different formulae. Er-
rors are measured by δrel and δscale, see Section 6 for details.

St
n σ range δrel δscale

neµ [0, 0.25] ≤ 7% ≤ 67%

n〈x〉 1(
1+ C2

n

)3/2 [0, 1.25] ≤ 30% ≤ 10%

n〈x〉 exp
[
− 3

2
σ2

nln(3/2)/ ln 2

]
[1.25, 4] ≤ 400% ≤ 7%

of the sample mean distribution with the sample size and
the fact that the typical sample mean and its inverse do
not vary with the sample size in opposite ways. Finally,
we have shown that the statistical effects arising from the
broadness of lognormal distributions have observable con-
sequences for moderate size physical systems.
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Appendix A: Approximation of narrow
lognormal distributions by normal distributions
and vice versa

As seen in Section 2, the lognormal probability distribu-
tion f(x) = LN(µ, σ2)(x) is mostly concentrated in the
interval [eµe−σ, eµeσ]. If σ � 1, this range is small and
can be rewritten as:

eµ (1 − σ) � x � eµ (1 + σ) . (A.1)

Thus it makes sense to expand f(x) around its typical
value eµ by introducing a new random variable ε de-
fined by:

x ≡ eµ (1 + ε) , (A.2)

where ε is a random variable on the order of σ:

−σ � ε � σ. (A.3)

As σ � 1, this entails |ε| � 1. Expanding the lognormal
distribution f(x) of equation (1) in powers of ε leads to:

f(x) � 1√
2πσ2eµ

(
1 − ε + ε2 + · · · )

exp
(
− ε2

2σ2
+

ε3

2σ2
+ · · ·

)
. (A.4)

The dominant term gives f(x) � 1√
2πσ2eµ

exp(− ε2

2σ2 ), thus
using equation (A.2):

f(x) � 1√
2π (σeµ)2

exp

[
− (x − eµ)2

2 (σeµ)2

]
· (A.5)
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In other words, a narrow lognormal distribution is well
approximated by a normal distribution:

σ � 1 : LN
(
µ, σ2

) � N
(
eµ, (σeµ)2

)
. (A.6)

More intuitively, the Gaussian approximation of nar-
row lognormal distributions LN

(
µ, σ2

)
(x) can be inferred

from the underlying Gaussian random variable y with dis-
tribution N (0, 1) (y), with x = eµ+σy. Since |y| � 1 and
σ � 1, one has |σy| � 1 and, thus, x � eµ (1 + σy). Con-
sequently, x being a linear transformation of a Gaussian
random variable, is itself normally distributed according
to N

(
eµ, (σeµ)2

)
, in agreement with equation (A.6).

Conversely, a narrow (σ � µ) Gaussian distribu-
tion N

(
µ, σ2

)
can be approximated by a lognor-

mal distribution:

σ � 1 : N
(
µ, σ2

) � LN
(
ln µ, (σ/µ)2

)
. (A.7)

For completeness, one can easily show that any
Gaussian distribution N

(
µ, σ2

)
can be approxi-

mated by a three parameter lognormal distribution
LN(ln (µ + A) , ( σ

µ+A )2, A) where A is any num-
ber such that A + µ 
 σ. The probability density
of the three parameter lognormal distribution is
LN

(
µ, σ2, A

)
= 1√

2πσ2(x−A)
exp{− [ln(x−A)−µ]2

2σ2 } for
x > A and 0 otherwise.
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